嵌入模型
🌐 Embedding Models
Mastra 的模型路由支持使用与语言模型相同的 provider/model 字符串格式来嵌入模型。这为聊天模型和嵌入模型提供了统一的接口,并支持 TypeScript 自动补全。
🌐 Mastra's model router supports embedding models using the same provider/model string format as language models. This provides a unified interface for both chat and embedding models with TypeScript autocomplete support.
快速开始Direct link to 快速开始
🌐 Quick Start
import { ModelRouterEmbeddingModel } from "@mastra/core/llm";
import { embedMany } from "ai";
// Generate embeddings
const { embeddings } = await embedMany({
model: new ModelRouterEmbeddingModel("openai/text-embedding-3-small"),
values: ["Hello world", "Semantic search is powerful"],
});
支持的型号Direct link to 支持的型号
🌐 Supported Models
OpenAIDirect link to OpenAI
text-embedding-3-small- 1536 维,最大 8191 令牌text-embedding-3-large- 3072 维,最大 8191 令牌text-embedding-ada-002- 1536 维,最大 8191 令牌
const embedder = new ModelRouterEmbeddingModel("openai/text-embedding-3-small");
谷歌Direct link to 谷歌
gemini-embedding-001- 768 维度,最多 2048 个标记
const embedder = new ModelRouterEmbeddingModel("google/gemini-embedding-001");
验证Direct link to 验证
🌐 Authentication
模型路由会自动从环境变量中检测 API 密钥:
🌐 The model router automatically detects API keys from environment variables:
- OpenAI:
OPENAI_API_KEY - 谷歌:
GOOGLE_GENERATIVE_AI_API_KEY
# .env
OPENAI_API_KEY=sk-...
GOOGLE_GENERATIVE_AI_API_KEY=...
自定义提供商Direct link to 自定义提供商
🌐 Custom Providers
你可以使用任何支持 OpenAI 的嵌入端点,并自定义 URL:
🌐 You can use any OpenAI-compatible embedding endpoint with a custom URL:
import { ModelRouterEmbeddingModel } from "@mastra/core/llm";
const embedder = new ModelRouterEmbeddingModel({
providerId: "ollama",
modelId: "nomic-embed-text",
url: "http://localhost:11434/v1",
apiKey: "not-needed", // Some providers don't require API keys
});
与内存一起使用Direct link to 与内存一起使用
🌐 Usage with Memory
嵌入模型路由与Mastra的内存系统无缝集成:
🌐 The embedding model router integrates seamlessly with Mastra's memory system:
import { Memory } from "@mastra/memory";
import { Agent } from "@mastra/core/agent";
import { ModelRouterEmbeddingModel } from "@mastra/core/llm";
const agent = new Agent({
id: "my-agent",
name: "my-agent",
instructions: "You are a helpful assistant",
model: "openai/gpt-5.1",
memory: new Memory({
embedder: new ModelRouterEmbeddingModel("openai/text-embedding-3-small"),
}),
});
embedder 字段接受:
🌐 The embedder field accepts:
EmbeddingModelId(带自动补齐功能的字符串)EmbeddingModel<string>(AI 开发工具包 v1)EmbeddingModelV2<string>(AI 开发工具包 v2)
与 RAG 的使用Direct link to 与 RAG 的使用
🌐 Usage with RAG
使用嵌入模型进行文档分块和检索:
🌐 Use embedding models for document chunking and retrieval:
import { ModelRouterEmbeddingModel } from "@mastra/core/llm";
import { embedMany } from "ai";
// Embed document chunks
const { embeddings } = await embedMany({
model: new ModelRouterEmbeddingModel("openai/text-embedding-3-small"),
values: chunks.map((chunk) => chunk.text),
});
// Store embeddings in your vector database
await vectorStore.upsert(
chunks.map((chunk, i) => ({
id: chunk.id,
vector: embeddings[i],
metadata: chunk.metadata,
})),
);
TypeScript 支持Direct link to TypeScript 支持
🌐 TypeScript Support
模型路由为嵌入模型 ID 提供完整的 TypeScript 自动补全功能:
🌐 The model router provides full TypeScript autocomplete for embedding model IDs:
import type { EmbeddingModelId } from "@mastra/core";
// Type-safe embedding model selection
const modelId: EmbeddingModelId = "openai/text-embedding-3-small";
// ^ Autocomplete shows all supported models
const embedder = new ModelRouterEmbeddingModel(modelId);
错误处理Direct link to 错误处理
🌐 Error Handling
模型路由在构建时验证提供商和模型 ID:
🌐 The model router validates provider and model IDs at construction time:
try {
const embedder = new ModelRouterEmbeddingModel("invalid/model");
} catch (error) {
console.error(error.message);
// "Unknown provider: invalid. Available providers: openai, google"
}
缺失的 API 密钥也会被尽早捕获:
🌐 Missing API keys are also caught early:
try {
const embedder = new ModelRouterEmbeddingModel(
"openai/text-embedding-3-small",
);
// Throws if OPENAI_API_KEY is not set
} catch (error) {
console.error(error.message);
// "API key not found for provider openai. Set OPENAI_API_KEY environment variable."
}
下一步Direct link to 下一步
🌐 Next Steps