向量 API
🌐 Vectors API
Vectors API 提供了在 Mastra 中处理向量嵌入以进行语义搜索和相似性匹配的方法。
🌐 The Vectors API provides methods to work with vector embeddings for semantic search and similarity matching in Mastra.
使用向量Direct link to 使用向量
🌐 Working with Vectors
获取一个向量存储实例:
🌐 Get an instance of a vector store:
const vector = mastraClient.getVector("vector-name");
向量方法Direct link to 向量方法
🌐 Vector Methods
获取向量索引详情Direct link to 获取向量索引详情
🌐 Get Vector Index Details
检索有关特定向量索引的信息:
🌐 Retrieve information about a specific vector index:
const details = await vector.details("index-name");
创建向量索引Direct link to 创建向量索引
🌐 Create Vector Index
创建新的向量索引:
🌐 Create a new vector index:
const result = await vector.createIndex({
indexName: "new-index",
dimension: 128,
metric: "cosine", // 'cosine', 'euclidean', or 'dotproduct'
});
插入或更新向量Direct link to 插入或更新向量
🌐 Upsert Vectors
在索引中添加或更新向量:
🌐 Add or update vectors in an index:
const ids = await vector.upsert({
indexName: "my-index",
vectors: [
[0.1, 0.2, 0.3], // First vector
[0.4, 0.5, 0.6], // Second vector
],
metadata: [{ label: "first" }, { label: "second" }],
ids: ["id1", "id2"], // Optional: Custom IDs
});
查询向量Direct link to 查询向量
🌐 Query Vectors
搜索相似向量:
🌐 Search for similar vectors:
const results = await vector.query({
indexName: "my-index",
queryVector: [0.1, 0.2, 0.3],
topK: 10,
filter: { label: "first" }, // Optional: Metadata filter
includeVector: true, // Optional: Include vectors in results
});
获取所有索引Direct link to 获取所有索引
🌐 Get All Indexes
列出所有可用的索引:
🌐 List all available indexes:
const indexes = await vector.getIndexes();
删除索引Direct link to 删除索引
🌐 Delete Index
删除向量索引:
🌐 Delete a vector index:
const result = await vector.delete("index-name");