Skip to main content

Memory.cloneThread()

.cloneThread() 方法会创建现有对话线程的副本,包括其中的所有消息。这使得可以从对话中的特定点创建不同的对话路径。当启用语义回忆时,该方法还会为克隆的消息创建向量嵌入。

🌐 The .cloneThread() method creates a copy of an existing conversation thread, including all its messages. This enables creating divergent conversation paths from a specific point in a conversation. When semantic recall is enabled, the method also creates vector embeddings for the cloned messages.

使用示例
Direct link to 使用示例

🌐 Usage Example

const { thread, clonedMessages } = await memory.cloneThread({
sourceThreadId: "original-thread-123",
});

参数
Direct link to 参数

🌐 Parameters

sourceThreadId:

string
The ID of the thread to clone

newThreadId?:

string
Optional custom ID for the cloned thread. If not provided, one will be generated.

resourceId?:

string
Optional resource ID for the cloned thread. Defaults to the source thread's resourceId.

title?:

string
Optional title for the cloned thread. Defaults to '[source title] (Copy)'.

metadata?:

Record<string, unknown>
Optional metadata to merge with the source thread's metadata. Clone metadata is automatically added.

options?:

CloneOptions
Optional filtering options for the clone operation.

选项参数
Direct link to 选项参数

🌐 Options Parameters

messageLimit?:

number
Maximum number of messages to clone. When set, clones the most recent N messages.

messageFilter?:

MessageFilter
Filter criteria for selecting which messages to clone.

消息过滤器参数
Direct link to 消息过滤器参数

🌐 MessageFilter Parameters

startDate?:

Date
Only clone messages created on or after this date.

endDate?:

Date
Only clone messages created on or before this date.

messageIds?:

string[]
Only clone messages with these specific IDs.

返回
Direct link to 返回

🌐 Returns

thread:

StorageThreadType
The newly created cloned thread with clone metadata.

clonedMessages:

MastraDBMessage[]
Array of the cloned messages with new IDs assigned to the new thread.

克隆元数据
Direct link to 克隆元数据

🌐 Clone Metadata

克隆线程的元数据包括一个具有以下内容的 clone 属性:

🌐 The cloned thread's metadata includes a clone property with:

sourceThreadId:

string
The ID of the original thread that was cloned.

clonedAt:

Date
Timestamp when the clone was created.

lastMessageId?:

string
The ID of the last message in the source thread at the time of cloning.

扩展使用示例
Direct link to 扩展使用示例

🌐 Extended Usage Example

src/test-clone.ts
import { mastra } from "./mastra";

const agent = mastra.getAgent("agent");
const memory = await agent.getMemory();

// Clone a thread with all messages
const { thread: fullClone } = await memory.cloneThread({
sourceThreadId: "original-thread-123",
title: "Alternative Conversation Path",
});

// Clone with a custom ID
const { thread: customIdClone } = await memory.cloneThread({
sourceThreadId: "original-thread-123",
newThreadId: "my-custom-clone-id",
});

// Clone only the last 5 messages
const { thread: partialClone, clonedMessages } = await memory.cloneThread({
sourceThreadId: "original-thread-123",
options: {
messageLimit: 5,
},
});

// Clone messages from a specific date range
const { thread: dateFilteredClone } = await memory.cloneThread({
sourceThreadId: "original-thread-123",
options: {
messageFilter: {
startDate: new Date("2024-01-01"),
endDate: new Date("2024-01-31"),
},
},
});

// Continue conversation on the cloned thread
const response = await agent.generate("Let's try a different approach", {
threadId: fullClone.id,
resourceId: fullClone.resourceId,
});

向量嵌入
Direct link to 向量嵌入

🌐 Vector Embeddings

当 Memory 实例启用语义回忆(并配置了向量存储和嵌入器)时,cloneThread() 会自动为所有克隆的消息创建向量嵌入。这确保了在克隆线程上语义搜索能够正常工作。

🌐 When the Memory instance has semantic recall enabled (with a vector store and embedder configured), cloneThread() automatically creates vector embeddings for all cloned messages. This ensures that semantic search works correctly on the cloned thread.

import { Memory } from "@mastra/memory";
import { LibSQLStore, LibSQLVector } from "@mastra/libsql";

const memory = new Memory({
storage: new LibSQLStore({ id: 'memory-store', url: "file:./memory.db" }),
vector: new LibSQLVector({ id: 'vector-store', url: "file:./vector.db" }),
embedder: embeddingModel,
options: {
semanticRecall: true,
},
});

// Clone will also create embeddings for cloned messages
const { thread } = await memory.cloneThread({
sourceThreadId: "original-thread",
});

// Semantic search works on the cloned thread
const results = await memory.recall({
threadId: thread.id,
vectorSearchString: "search query",
});

🌐 Related